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Abstract—For a system of first-order partial differential equations describing a catalytic process
in a fluidized bed, we consider a mixed problem in the half-strip 0 ≤ x ≤ h, t ≥ 0. We prove the
existence and uniqueness of a bounded summable generalized solution and study its stability.
We prove the stabilization as t → ∞ of the values of some physically meaningful functionals of the
solution.
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INTRODUCTION

The mathematical models accounting for the influence of the reaction medium on the nonstationary
states of the active surface of catalyst are widely used to describe catalytic processes in fluidized beds
[1, 2]. In this article, we consider a circulation model of a process in which we can express the motion
of the catalyst particles as two interpenetrating flows: the ascending flow the fraction of whose particles
is equal to a, 0 < a < 1; and the descending flow whose fraction is b = 1 − a. For a two-stage catalytic
reaction of the first order with respect to the intermediate substance, a mathematical model of the process
reduces [3] to a mixed problem on the half-strip Π = {(x, t) : x ∈ [0, h], t ≥ 0}:

cx = −pf(c)(1 − au − bv), c(0, t) = c0, (1)

aut + ux = q(v − u) − a(1 + f(c))u + af(c), (2)

bvt − vx = q(u − v) − b(1 + f(c))v + bf(c), (3)

with the initial and boundary conditions

u(ξ, t) = v(ξ, t), ξ = 0, h, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, h],

c0 ≥ 0, 0 ≤ u0(x) ≤ 1, 0 ≤ v0(x) ≤ 1,

where a, b, p > 0, q ≥ 0, and c0 are constant parameters; t is time; x is the coordinate along the bed
height; c(x, t), u(x, t), and v(x, t) are the concentrations of the substance in the gas phase and in the
ascending and descending flows of catalyst particles; and f(c) is a function describing the chemical
reaction rate.

In accordance with the current understanding of catalytic processes, we assume that f(c) = 0
for c ≤ 0 and f(c) > 0 for c > 0. Only the solutions satisfying 0 ≤ c(x, t) ≤ c0, 0 ≤ u(x, t) ≤ 1, and
0 ≤ v(x, t) ≤ 1 are physically meaningful.

A similar mathematical model was used [2] for numerical simulations of catalytic processes. Thus, it
is of practical interest to study the qualitative properties of this boundary value problem: the existence
of stationary and nonstationary solutions, their stability or instability, and the stabilization of some
physically meaningful functionals of the solution.
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This article naturally continues [3–6]. In [3], we proved the existence and uniqueness of a stationary
solution to (1)–(3). In [4–6], under various assumptions regarding the functions f(c), u0(x), and v0(x),
we proved the existence and uniqueness for all t ≥ 0 of continuously differentiable and continuous gen-
eralized solutions to (1)–(3). In [3, 5, 6], for the solution under consideration, we proved the stabilization
as t → ∞ of the values of two functionals,

W (t) = Φ(u, v) =

h∫

0

(au(x, t) + bv(x, t)) dx

and c(h, t), of the solution with concrete physical meanings to their values on the stationary solution.
In [6], we studied the stability of a continuous generalized solution.

In applications the initial conditions u0(x) and v0(x) of (1)–(3) can be discontinuous. Thus, the
existence, uniqueness, and stability of discontinuous generalized solutions are urgent questions. In this
article, we prove the existence and uniqueness of a bounded summable generalized solution to (1)–(3),
study its stability, and prove the stabilization of the functionals c(h, t) and Φ(u, v) as t → ∞.

Henceforth, let M(Q) denote both scalar and vector spaces of functions defined and bounded on
a domain Q. Consider the following norms in M(Q):

‖w‖Q = ‖w‖M(Q) = sup
Q

|w|, ‖w‖Q = ‖w‖M(Q) = max
i

sup
Q

|wi|, (4)

where w = (w1, . . . , wn). Let C(Q) and Hα(Q) denote the spaces of continuous and Hölder continuous
functions with the exponent α ≤ 1. For vectors U = (u, v), we understand under the inequality U ≥ m
(or U ≤ M ), where m and M are scalars, the simultaneous fulfillment of u ≥ m and v ≥ m (or u ≤ M
and v ≤ M ). Let K,K1,K2, . . . denote some constants depending only on the initial data of (1)–(3) but
independent of t.

1. THE LINEAR PROBLEM

In the half-strip Π, consider the mixed problem for the linear hyperbolic system

aut + ux = q(v − u) − a(1 + g1(x, t))u + af1(x, t), (5)

bvt − vx = q(u − v) − b(1 + g2(x, t))v + bf2(x, t) (6)

with the initial and boundary conditions

u(ξ, t) = v(ξ, t), ξ = 0, h, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, h],

where gi(x, t) ≥ 0 and fi(x, t) for i = 1, 2 are some given bounded functions on Π.
In the space M(Q) of functions defined on a bounded domain Q, choose the set M0(Q) of all functions

u(x, t) summable in Q and integrable over every straight line segment within Q. In the case of vector
functions U(x, t) = (u(x, t), v(x, t)), where u(x, t) ∈ M0(Q) and v(x, t) ∈ M0(Q), let M0(Q) denote
also the space equipped with the norm (4). Using a well-known theorem of [7, p. 85], we can show
that M0(Q) are closed in M(Q) and, consequently, are Banach spaces. Say that U(x, t) ∈ M0(Π)
if U(x, t) ∈ M0(ΠT ) for every T > 0, where ΠT = {(x, t) : x ∈ [0, h], 0 ≤ t ≤ T}. Let M1(Π) be the
set of vector functions U(x, t) ∈ M0(Π) such that u(x, t) and v(x, t) are uniformly Lipschitz continuous
on Π along the characteristics of (5) and (6) respectively.

Lemma 1. Take a bounded function u(x, t) on Π that is continuous along the straight lines
a1x + b1y = ξ and linearly summable along the bounded segments of the lines a2x + b2y = η
within Π, where ai and bi are constants satisfying a1b2 �= a2b1, while ξ and η are some arbitrary
parameters. Then

(a) u(x, t) ∈ M0(Π);

(b) the integral of u(x, t) along every line segment in Π is a continuous function on Π;
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(c) if u(x, t) is uniformly Lipschitz continuous on Π along the lines of the first family then this
integral is uniformly Lipschitz continuous on Π.

Proof. Assume that u(x, t) is summable over x for every t ≥ 0 and is continuous along the lines
t = ax + ξ, where a �= 0. For definiteness, assume that a > 0. Choosing arbitrary T > 0 and integer
n ≥ 1, put tk = kT/n for k = 0, 1, 2, . . . , n and, in ΠT , define the function

un(x, t) =

{
u(0, tk), x ≤ (t − tk)/a,

u(x − (t − tk)/a, tk), x ≥ (t − tk)/a,

tk ≤ t < tk+1, k = 0, 1, . . . , n − 1.

It is not difficult to verify that un(x, t) ∈ M0(ΠT ) for every finite n; moreover,

sup |un(x, t)| ≤ sup |u(x, t)|, sup |u(x, t) − un(x, t)| → 0 as n → ∞.

Then the completeness of M0(ΠT ) implies u(x, t) ∈ M0(ΠT ). Put

I(x, t) =

x∫

0

u(ξ, t)dξ, (x, t) ∈ Π. (7)

For arbitrary t ≥ 0 and 0 < δ < ah, express the difference

I(x, t + δ) − I(x, t)

=

δ/a∫

0

u(ξ, t + δ)dξ −
x∫

x−δ/a

u(ξ, t)dξ +

x−δ/a∫

0

[u(ξ + δ/a, t + δ) − u(ξ, t)]dξ. (8)

Since u(x, t) is bounded, (7) yields the uniform Lipschitz continuity of I(x, t) on Π with respect to x.
Since u(x, t) are continuous and bounded along the lines parallel to the line t = ax; therefore, the right-
hand side of (8) vanishes as δ → 0; consequently, I(x, t) is continuous on Π. If u(x, t) is uniformly
Lipschitz continuous on Π along these lines with some Lipschitz constant L then (8) yields

|I(x, t + δ) − I(x, t)| ≤
(
2‖u(x, t)‖ + hL

√
1 + a2

)
δ/a.

Since I(x, t) is uniformly Lipschitz continuous on Π with respect to x, this estimate implies that I(x, t)
is uniformly Lipschitz continuous on Π.

In the general case, the proof goes similarly. The only difference is that to obtain the required estimates
we use two equalities similar to (8) with separate increments of t and x.

Let t1(x, t) ≤ t and t2(x, t) ≤ t denote the values of the time variable for which the characteristics
of (5) and (6) passing through (x, t) ∈ Π intersect the boundary of Π:

t1(x, t) =

{
0, t ≤ ax,

t − ax, t > ax,
t2(x, t) =

{
0, t ≤ b(h − x),
t − b(h − x), t > b(h − x).

Integrating (5) and (6) along the characteristics, we obtain the system of integral equations

u(x, t) = u1(x, t) +

t∫

t1

F1[u, v](x − (t − τ)/a, τ)dτ, (9)

v(x, t) = v1(x, t) +

t∫

t2

F2[u, v](x + (t − τ)/b, τ)dτ, (10)
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where

u1(x, t) =

{
u0(x − t/a), t1 = 0,
v(0, t1), t1 > 0,

v1(x, t) =

{
v0(x + t/b), t2 = 0,
u(h, t2), t2 > 0,

F1[u, v](x, t) = q1(v(x, t) − u(x, t)) − (1 + g1(x, t))u(x, t) + f1(x, t), q1 = q/a,

F2[u, v](x, t) = q2(u(x, t) − v(x, t)) − (1 + g2(x, t))v(t, x) + f2(x, t), q2 = q/b.

Definition 1. Refer to U(x, t) ∈ M0(Π) satisfying (9) and (10) in Π as a bounded summable
generalized solution to (5), (6).

Theorem 1. Take gi(x, t) ∈ M0(Π) and fi(x, t) ∈ M0(Π) with gi(x, t) ≥ 0 for i = 1, 2, and let
U0(x) ∈ M0[0, h]. Then the system (9), (10) is uniquely solvable in M1(Π), and its solution U(x, t)
satisfies

min{m0,m1,m2} ≤ U(x, t) ≤ max{M0,M1,M2} (11)

for all (x, t) ∈ Π, where

m0 = min{ inf
0≤x≤h

u0(x), inf
0≤x≤h

v0(x)}, M0 = max{ sup
0≤x≤h

u0(x), sup
0≤x≤h

v0(x)},

mi = inf
Π

(fi(x, t)/(1 + gi(x, t)), Mi = sup
Π

(fi(x, t)/(1 + gi(x, t)), i = 1, 2.

Proof. We prove the existence of a solution by successive approximations. As the initial approxi-
mation, take an arbitrary function U1(x, t) ∈ M0(Π). Find the successive approximations Un(x, t),
n = 2, 3, . . . , by solving

un(x, t) = un
1 (x, t) +

t∫

t1

F1[un, vn−1](x − (t − τ)/a, τ)dτ, (12)

vn(x, t) = vn
1 (x, t) +

t∫

t2

F2[un−1, vn](x + (t − τ)/b, τ)dτ, (13)

where

un
1 (x, t) =

{
u0(x − t/a), t ≤ ax,

vn(0, t − ax, ), t > a x,
vn
1 (x, t) =

{
v0(x + t/b), t ≤ b(h − x),
un(h, t − b(h − x)), t > b(h − x).

Verify that the so-obtained system is solvable in M0(Π) and

‖Un(x, t)‖Π ≤ K = max
{
‖U1(x, t)‖Π, ‖U0(x)‖[0,h], ‖f1(x, t)‖Π, ‖f2(x, t)‖Π

}

for all n. Assuming that Un−1(x, t) ∈ M0(Π) and ‖Un−1(x, t)‖Π ≤ K, show that

Un(x, t) ∈ M0(Π), ‖Un(x, t)‖Π ≤ K.

The proof goes successively for the domains

Q1,0 = {(x, t) : 0 ≤ x ≤ h, 0 ≤ t ≤ ax},
Q2,0 = {(x, t) : 0 ≤ x ≤ h, 0 ≤ t ≤ h − bx},

and, for i = 1, 2, . . . ,

Q1,i = {(x, t) : 0 ≤ x ≤ h, (i − 1)h + ax ≤ t ≤ ih + ax},
Q2,i = {(x, t) : 0 ≤ x ≤ h, ih − bx ≤ t ≤ (i + 1)h − bx}.
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In Q1,0. the solution to (12) is of the form

un(x, t) = u0(x − t/a)G1(x, t, 0) +

t∫

0

G1(x, t, τ)fn
1 (x − (t − τ)/a, τ)dτ, (14)

where
fn
1 (x, t) = f1(x, t) + q1v

n−1(x, t),

G1(x, t, τ) = exp

(
−

t∫

τ

(1 + q1 + g1(x − (t − s)/a, s))ds

)
.

It follows from (14) that un(x, t) ∈ M0(Q1,0) and un(x, t) satisfies ‖un(x, t)‖Q1,0 ≤ K. We can
express the solution to (13) in Q2,0 as

vn(x, t) = vn
0 (x, t2)G2(x, t, t2) +

t∫

t2

G2(x, t, τ)fn
2 (x + (t − τ)/b, τ)dτ, (15)

where
fn
2 (x, t) = f2(x, t) + q2u

n−1(x, t),

vn
0 (x, t2) = v0(x) for t2(x, t) = 0, vn

0 (x, t2) = un(h, t2) for t2(x, t) > 0,

G2(x, t, τ) = exp

(
−

t∫

τ

(1 + q2 + g2(x + (t − s)/b, s))ds

)
,

which implies vn(x, t) ∈ M0(Q2,0) and ‖vn(x, t)‖Q2,0 ≤ K. Using similar constructions for the remain-
ing domains Q1,i and Q2,i, i = 1, 2, . . . , we find Un(x, t) ∈ M0(Π) and ‖Un(x, t)‖Π ≤ K.

Put ΔUn(x, t) = Un(x, t) − Un−1(x, t) for n = 2, 3, . . . . Using (12) and (13), find the equations for
Δun(x, t) and Δvn(x, t) for n = 2, 3, . . . :

Δun(x, t) = Δun
1 (x, t) +

t∫

t1

ΔFn
1 (x − (t − τ)/a, τ)dτ, (16)

Δvn(x, t) = Δvn
1 (x, t) +

t∫

t2

ΔFn
2 (x + (t − τ)/b, τ)dτ, (17)

where

Δun
1 (x, t) =

{
0, t1(x, t) = 0,
Δvn(0, t1), t1(x, t) > 0,

Δvn
1 (x, t) =

{
0, t2(x, t) = 0,
Δun(h, t2), t2(x, t) > 0,

ΔFn
1 (x, t) = −(1 + q1 + g1(x, t))Δun(x, t) + q1Δvn−1(x, t), q1 = q/a,

ΔFn
2 (x, t) = −(1 + q2 + g2(x, t))Δvn(t, x) + q2Δun−1(x, t), q2 = q/b.

By (16) in Q1,0,

Δun(x, t) =

t∫

0

G1(x, t, τ)q1Δvn−1(x − (t − τ)/a, τ)dτ,

which implies

‖Δun(x, t)‖Q1,0 ≤ ρ1‖Δvn−1(x, t)‖Q1,0 ≤ ρ‖ΔUn−1(x, t)‖Π,
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where ρi = qi/(1 + qi) for i = 1, 2, and ρ = max{ρ1, ρ2} < 1. The solution to (17) in Q2,0 satisfies

Δvn(x, t) = Δvn
0 (x, t2)G2(x, t, t2) +

t∫

t2

G2(x, t, τ)q2Δun−1(x + (t − τ)/b, τ)dτ ;

hence, the previous estimate yields ‖Δvn(x, t)‖Q2,0 ≤ ρ‖ΔUn−1(x, t)‖Π.
Making similar estimates in Q1,i and Q2,i for i = 1, 2, . . . , we obtain

‖ΔUn(x, t)‖Π ≤ ρ‖ΔUn−1(x, t)‖Π, ρ < 1. (18)

Since M0(Π) is complete, this implies the existence of the same limit function U(x, t) for all U1(x, t) ∈
M0(Π) satisfying ‖Un(x, t) − U(x, t)‖Π → 0 as n → ∞. Passing to the limit in (12) and (13), we see
that U(x, t) is a solution to (9), (10).

In order to verify (11), choose as U1(x, t) a function satisfying (11). Suppose that Un−1 satisfies (11).
Using (14), establish that un(x, t) satisfies (11) in Q1,0. Therefore, we can find from (13) a similar
estimate for vn(x, t) in Q2,0. Using similar estimates successively in Q1,i and Q2,i for i = 1, 2, . . . , we
verify that Un(x, t) satisfies (11), but then the limit function U(x, t) satisfies this estimate as well. This
implies the uniqueness of a solution to (9), (10), while (9), (10), and (11) imply U(x, t) ∈ M1(Π). The
proof of Theorem 1 is complete.

Corollary 1. On assuming the hypotheses of Theorem 1, suppose that fi(x, t) ≥ 0 and (x, t) ∈ Π
for i = 1, 2, while U0(x) ≥ 0 and x ∈ [0, h]. Then, for all (x, t) ∈ Π, the solution to the problem (9),
(10) satisfies U(x, t) ≥ 0.

2. THE NONLINEAR PROBLEM

Consider the problem (1)–(3) in the half-strip Π. Let M0
1 (Π) denote the space of vector functions

V (x, t) = (c(x, t), u(x, t), v(x, t)), where c(x, t) ∈ C(Π), u(x, t) ∈ M0(Π), and v(x, t) ∈ M0(Π). We
can show that M0

1 (Π) is closed in M(Π) and is a Banach space. Let M1
1 (Π) denote the set of vector

functions V (x, t) ∈ M0
1 (Π) such that c(x, t) ∈ H1(Π), while u(x, t) and v(x, t) are uniformly Lipschitz

continuous on Π along the characteristics of (2) and (3) respectively. Let S0 denote the set of vector
functions U0(x) = (u0(x), v0(x)) ∈ M0[0, h] satisfying 0 ≤ U0(x) ≤ 1. The set S0 is closed in M [0, h].

Integrating (1)–(3) over the characteristics, we obtain

c(x, t) = c0 −
x∫

0

F0[V ](ξ, t)dξ, (19)

u(x, t) = u1(x, t) +
1
a

t∫

t1

F1[V ](x − (t − τ)/a, τ)dτ, (20)

v(x, t) = v1(x, t) +
1
b

t∫

t2

F2[V ](x + (t − τ)/b, τ)dτ, (21)

where

u1(x, t) =

{
u0(x − t/a), t1 = 0,
v(0, t − ax), t1 > 0,

v1(x, t) =

{
v0(x + t/b), t2 = 0,
u(h, t − b(h − x)), t2 > 0,

F0[V ](x, t) = pf(c(x, t))(1 − au(x, t) − bv(x, t)),

F1[V ](x, t) = q(v(x, t) − u(x, t)) − a(1 + f(c(x, t)))u(x, t) + af(c(x, t)),

F2[V ](x, t) = q(u(x, t) − v(x, t)) − b(1 + f(c(x, t)))v(t, x) + bf(c(x, t)).
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It is not difficult to verify that (1)–(3) and (19)–(21) are equivalent in the class of smooth solutions.
Definition 2. Refer to V (x, t) ∈ M0

1 (Π) satisfying (19)–(21) in Π as a bounded summable gener-
alized solution to (1)–(3).

Theorem 2. Suppose that c0 ≥ 0, f(c) ∈ C[0, c0] for c0 > 0, and U0(x) ∈ S0. Then there exists
a solution V (x, t) ∈ M1

1 (Π) to (19)–(21) and, for all (x, t) ∈ Π,

0 ≤ c(x, t) ≤ c0, 0 ≤ u(x, t) ≤ 1, 0 ≤ v(x, t) ≤ 1. (22)

Moreover, if f(c) is Lipschitz continuous then the solution is unique.

Proof. If c0 = 0 then (19) implies c(x, t) ≡ 0, and the problem (19)–(21) reduces to (20)–(21) with
f(c) ≡ 0. In this case, the existence and uniqueness of a solution to (19)–(21), as well as the validity
of (22), follow from Theorem 1.

Suppose that c0 > 0. Choosing an arbitrary value of T ∈ (0,∞), consider (19)–(21) in the rectangle

ΠT = {(x, t) : 0 ≤ x ≤ h, 0 ≤ t ≤ T}.
In this case, we can prove the existence of a solution using the Schauder fixed point theorem. To this
end, define the operator L on the bounded closed convex set S = {z(x, t) ∈ C(ΠT ), 0 ≤ z(x, t) ≤ c0}
as follows: for arbitrary z(x, t) ∈ S, find the functions u(x, t) and v(x, t) as the solution to (20), (21) for
f(c) = f(z). Theorem 1 implies that, for every z(x, t) ∈ S, this solution exists, belongs to M1(ΠT ), and
satisfies 0 ≤ U(x, t) ≤ 1. Using u(x, t) and v(x, t), define c(x, t) = Lz(x, t) as the solution to

J(c(x, t), c0) ≡
c0∫

c(x,t)

ds

f(s)
= ψ∗(x, t) ≡

{
ψ(x, t), ψ(x, t) ≤ K,

K, ψ(x, t) ≥ K,
(23)

where ψ(x, t) = p(x − w(x, t)), w(x, t) =
∫ x
0 (au(ξ, t) + bv(ξ, t))dξ, and K = J(0, c0).

For all (x, t) ∈ ΠT , (23) is uniquely solvable [3] for c(x, t). If ψ(x, t) < K then 0 < c(x, t) ≤ c0, and
if ψ(x, t) ≥ K then c(x, t) = 0. Taking into account (23) for two distinct values of (x, t) ∈ ΠT and
(x1, t1) ∈ ΠT , we find

J(c(x, t), c(x1, t1)) = ψ∗(x, t) − ψ∗(x1, t1) (23′)

that implies

|c(x, t) − c(x1, t1)| ≤ max f(c)|ψ∗(x1, t1) − ψ∗(x, t)|.
Theorem 1 and Lemma 1 imply w(x, t) ∈ H1(ΠT ), but then ψ(x, t) ∈ H1(ΠT ) and ψ∗(x, t) ∈ H1(ΠT ).
Consequently, c(x, t) ∈ H1(ΠT ), and the operator L compactly maps the bounded closed convex set S
into its part.

Verify the continuity of L. Take arbitrary functions z1 and z2 in S, the solutions u1, v1 and u2, v2 to
(20), (21) with f(c) = f(z1) and f(c) = f(z2), and put ci = Lzi for i = 1, 2. Put the pair ΔU = U1 −U2

and Δc = c1 − c2. Then Δu(x, t), Δv(x, t) is a solution to

Δu(x, t) = Δu1(x, t) +

t∫

t1

ΔF1(x − (t − τ)/a, τ)dτ,

Δv(x, t) = Δv1(x, t) +

t∫

t2

ΔF2(x + (t − τ)/b, τ)dτ,

(24)

where

Δu1(x, t) =

{
0, t1(x, t) = 0,
Δv(0, t1), t1(x, t) > 0,

Δv1(x, t) =

{
0, t2(x, t) = 0,
Δu(h, t2), t2(x, t) > 0,

ΔF1(x, t) = −(1 + q1 + f(z1))Δu(t, x) + q1Δv(x, t) + (f(z1) − f(z2))(1 − u2),

ΔF2(x, t) = −(1 + q2 + f(z1))Δv(t, x) + q2Δu(x, t) + (f(z1) − f(z2))(1 − v2).
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By Theorem 1, the solution to (24) satisfies

‖ΔU(x, t)‖ΠT ≤ ‖f(z1) − f(z2)‖ΠT . (25)

Using (23′), we obtain

|J(c1(x, t), c2(x, t))| ≤ p

x∫

0

(a|Δu(ξ, t)| + b|Δv(ξ, t)|)dξ, (26)

whence

‖Δc(x, t)‖ΠT ≤ phmax f(c)|‖ΔU(x, t)‖ΠT . (27)

The continuity of f(c) together with (25) and (27) imply the continuity of L.
Therefore, all requirements of the Schauder theorem are fulfilled. Consequently, there exists a function

z∗ ∈ S with z∗ = Lz∗. However, then, by the definition of L, the function c(x, t) = z∗(x, t) and the
corresponding u(x, t) and v(x, t) satisfy (20), (21) and (23) in ΠT , while c(x, t) ∈ H1(ΠT ), U(x, t) ∈
M1(ΠT ), and (22) holds for all (x, t) ∈ ΠT . Since T > 0 is arbitrary and (22) is independent of T ,
it follows that the problem (20), (21), (23) is solvable for all t ≥ 0.

Verify that the problems (19)–(21) and (20), (21), (23) are equivalent in the class of solutions under
consideration. Take a solution V (x, t) to (20), (21), (23) and show that V (x, t) is a solution to (19)–(21).
It suffices to show that the function c(x, t) appearing in the solution to (20), (21), (23) satisfies (19).
Consider (23) for an arbitrarily chosen value of t ≥ 0. The function ψ(x, t) in the right-hand side of (23)
is continuous and nondecreasing with respect to x, while ψ(0, t) = 0. Thus, if ψ(h, t) ≥ K then there
is a point x∗(t) ∈ [0, h] with ψ(x, t) < K for x < x∗(t) and ψ(x, t) ≥ K for x ≥ x∗(t). If ψ(h, t) < K
then put x∗(t) = h. It follows from (23) that c(x, t) > 0 and f(c(x, t)) > 0 for all x < x∗(t). For arbitrary
values x ≤ x∗(t), divide the segment [0, x] into n parts with the points xi = ix/n, i = 0, 1, 2, . . . , n.
Since c(x, t) and f(c) are continuous and the integrals J(c(xi, t), c(xi−1, t)) are bounded on every
segment [xi−1, xi], i = 1, 2, . . . , n, there is ξi ∈ [xi−1, xi] such that

J(ci−1, ci) =
ci−1 − ci

f(c(ξi, t))
= p

xi∫

xi−1

s(ξ, t)dξ,

where f(c(ξi, t)) > 0, s(x, t) = 1 − au(x, t) − bv(x, t), and ci = c(xi, t) for i = 1, 2, . . . , n.
Multiplying the resulting equalities by f(c(ξi, t)) and summing them over i from 1 to n, we obtain

c0 − c(x, t) = p

x∫

0

f(cn(ξ, t))s(ξ, t)dξ,

where cn(x, t) is a piecewise constant function with respect to x, and cn(x, t) = c(ξi, t) for x ∈ [xi−1, xi),
i = 1, 2, . . . , n.

Passing in the previous equality to the limit as n → ∞ and considering that

sup
x

|f(c(x, t)) − f(cn(x, t))| → 0 as n → ∞,

we arrive at (19). If x∗(t) < h then c(x, t) = 0 and f(c(x, t)) = 0 for x ∈ [x∗(t), h]; consequently, (19) is
valid for all x ∈ [0, h] and t ≥ 0, and c(x, t) satisfies (19).

We can prove similarly that every solution to (19)–(21) belonging to M0
1 (Π) is a solution to (20),

(21), (23). Therefore, in this class, the solutions to (19)–(21) and to (20), (21), (13) are equivalent.
Consequently, the problem (19)–(21) is solvable for all t ≥ 0, and its solution satisfies (22).

Verify the uniqueness of a solution to (19)–(21). Take two distinct solutions V1(x, t) and V2(x, t) and
put ΔV (x, t) = V1(x, t) − V2(x, t). Then ΔU(x, t) is a solution to a system similar to (24) with

ΔF1(x, t) = −(1 + q1 + f(c1))Δu(t, x) + q1Δv(x, t) + (f(c1) − f(c2))(1 − u2),

ΔF2(x, t) = −(1 + q2 + f(c1))Δv(t, x) + q2Δu(x, t) + (f(c1) − f(c2))(1 − v2).
(28)
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Estimating the integrals in the right-hand sides of (24) and (28) for t ∈ [0, τ ], τ > 0, and taking the
Lipschitz continuity of f(c) into account, we obtain

‖ΔU‖Πτ ≤ τK1(‖ΔU‖Πτ + ‖Δc‖Πτ ), (29)

where Πτ = {(x, t) : 0 ≤ x ≤ h, 0 ≤ t ≤ τ}.
For c1(x, t) and c2(x, t), we have (27). Inserting it in (29), we arrive at

‖ΔU‖Πτ ≤ τK2‖ΔU‖Πτ ,

where the constants K1 and K2 are independent of t and τ . For τ < 1/K2, the last inequality is valid
only for ‖ΔU‖Πτ = 0, which implies the uniqueness of a solution to (19)–(21).

3. STABILIZATION OF THE VALUES OF FUNCTIONALS OF THE SOLUTION

Theorem 3. Take c0 ≥ 0, f(c) ∈ C[0, c0] for c0 > 0, and the solution V (x, t) to (19)–(21) with
the initial data U0(x) ∈ S0. Then the values of c(h, t) and Φ(u, v) as t → ∞ monotonely tend to
c∗(h) and Φ(u∗, v∗) on the stationary solution, and, for all t ≥ 0, we have

|Φ(u, v) − Φ(u∗, v∗)| ≤ |Φ(u0, v0) − Φ(u∗, v∗)| exp(−t),

|c(t, h) − c∗(h)| ≤ pF |Φ(u0, v0) − Φ(u∗, v∗)| exp(−t).

Proof. Using (20), for t ≥ 0 and 0 < δ < ah, express the difference

a(u(x, t + δ) − u(x, t)) = aû(x, t) +

t+δ∫

τ1

F1[V ](x − (t − τ)/a, τ)dτ, (30)

where

û(x, t) = u(0, τ1), τ1 = t + δ − ax for 0 ≤ x < δ/a,

û(x, t) = 0, τ1 = t for δ/a ≤ x ≤ h − δ/a,

û(x, t) = −u(h, τ2) +

τ2∫

t

F1[u, v](x + (τ − t)/a, τ)dτ,

τ1 = t, τ2 = t + a(h − x) for h − δ/a < x ≤ h.

Integrating (30) over x from 0 to h, upon changing the variable and switching the order of integration
in the double integrals (which is allowed since F1[u, v](x, t) ∈ M0(Π)), we arrive at

a

h∫

0

(u(x, t + δ) − u(x, t))dx =

t+δ∫

t

(u(0, τ) − u(h, τ))dτ +

t+δ∫

t

h∫

0

F1[V ](x, τ)dxdτ. (31)

Similarly using (21), we have

b

h∫

0

(v(x, t + δ) − v(x, t))dx =

t+δ∫

t

(v(h, τ) − v(0, τ))dτ +

t+δ∫

t

h∫

0

F2[V ](x, τ)dxdτ. (32)

Integrating (19) for x = h over t from t to t + δ and adding up the left- and right-hand sides of
the resulting equalities, (31), and (32), we obtain the integral conservation law for the intermediate
substance in the bed:

W (t + δ) − W (t) = −
t+δ∫

t

W (τ)dτ − p−1

t+δ∫

t

(c(h, τ) − c0)dτ, (33)
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where W (t) =
∫ h
0 (au(x, t) + bv(x, t))dx is the total content of the intermediate substance in the bed.

Since W (t) and c(h, t) are continuous; therefore, dividing (33) by δ and passing to the limit as δ → 0,
we arrive at the Cauchy problem

Wt(t) = −W (t) − p−1c(h, t) + p−1c0, W (0) = Φ(u0, v0). (34)

For c0 = 0, we have: c(h, t) ≡ 0, the stationary solution to (19)–(21) is V ∗(x) ≡ 0, and Φ(u∗, v∗) = 0.
In this case, (34) yields Φ(u, v) = W (t) = Φ(u0, v0) exp(−t).

Suppose that c0 > 0. Generally speaking, the hypotheses of Theorem 3 fail to imply the uniqueness
of a solution to (19)–(21), and so, the uniqueness of W (t) either. Using (23), we can show [3] that c(h, t)
is a monotonely increasing continuously differentiable function of W (t):

c(h, t) = Ψ(W (t)),
dΨ(W )

dW
= pf(Ψ(W )). (35)

Consequently, W (t) is uniquely determined for all t ≥ 0 as the solution to the Cauchy problem (34).

For the stationary solution V ∗(x) = (c∗(x), u∗(x), v∗(x)) to (1)–(3), and thus, to (19)–(21), the
values c∗(h) and W ∗ = Φ(u∗, v∗) are uniquely determined [3] and satisfy the stationary equation

p−1(c0 − c∗(h)) = W ∗ = Φ(u∗, v∗), c∗(h) = Ψ(W ∗). (36)

Using (34) and (36), we arrive at the Cauchy problem

ΔWt(t) = −ΔW (t)− p−1ΔΨ, ΔW (0) = W (0) − W ∗,

where ΔW (t) = W (t) − W ∗ and ΔΨ = c(h, t) − c∗(h) = Ψ(W (t)) − Ψ(W ∗).

It follows from (35) that ΔΨ ≥ 0 for ΔW (t) ≥ 0, and ΔΨ ≤ 0 for ΔW (t) ≤ 0. The rest of the proof
of Theorem 3 coincides with the proof of Theorem 2 of [3].

4. STABILITY OF THE GENERALIZED SOLUTION

Let H
1/2
0 [0, h] and H1

0 [0, h] denote the spaces of vector functions V (x) = (c(x), u(x), v(x)) with the
norms

‖V (x)‖
H

1/2
0 [0,h]

= max
{
‖c(x)‖H1/2 [0,h], ‖U(x)‖L2(0,h)

}
,

‖V (x)‖H1
0 [0,h] = max

{
‖c(x)‖H1[0,h], ‖U(x)‖M [0,h]

}
,

where

‖U(x)‖L2(0,h) =

( h∫

0

(au2(x) + bv2(x))dx

)1/2

.

Given f(c) ∈ H1[0, c0], define F = max f(c) and μ = min f(c) over the segment c ∈ [ch, c0], where
ch = c0 exp(−pF 1h), and F 1 is the Lipschitz constant of f(c).

Theorem 4. Take c0 ≥ 0, and let f(c) ∈ H1[0, c0] with phFF 1 ≤ 2 for c0 > 0. Then every pair
Vi(x, t) ∈ M0

1 (Π), i = 1, 2, of generalized solutions to (1)–(3) with initial data U0
i (x) ∈ S0 satisfy

‖V1(x, t) − V2(x, t)‖
H

1/2
0 [0,h]

≤ K1e
−γt‖U0

1 (x) − U0
2 (x)‖L2([0,h), (37)

‖V1(x, t) − V2(x, t)‖H1
0 [0,h] ≤ K2e

−γt‖U0
1 (x) − U0

2 (x)‖M [0,h] (38)

for all t ≥ 0, where γ = 1 for c0 = 0 and γ = μ for c0 > 0, while K1 and K2 are constants
independent of t, U0

1 (x), and U0
2 (x).
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Proof. The existence and uniqueness of these generalized solutions follow from Theorem 2. Put
ΔV (x, t) = V1(x, t) − V2(x, t). By (20) and (21), we obtain

Δu(x, t) = Δu1(x, t) +
1
a

t∫

t1

ΔF1(x − (t − τ)/a, τ)dτ, (39)

Δv(x, t) = Δv1(x, t) +
1
b

t∫

t2

ΔF2(x + (t − τ)/b, τ)dτ, (40)

where

ΔF1(x, t) = q(Δv(x, t) − Δu(x, t)) − a(1 + f(c1))Δu(x, t) + aΔf1(x, t),

ΔF2(x, t) = q(Δu(x, t) − Δv(x, t)) − b(1 + f(c1))Δv(t, x) + bΔf2(x, t),

Δf1(x, t) = (f(c1) − f(c2))(1 − u2), Δf2(x, t) = (f(c1) − f(c2))(1 − v2).

Using (39), find an expression for the difference Δu(x, t + δ) − Δu(x, t) for t > 0 and t ≤ δ ≤ ah
similar to (30). Multiply the resulting equality by Δū(x, t) = (Δu(x, t + δ) + Δu(x, t))/2 and integrate
it over x from 0 to h. Then, using

Δū(x, t) = Δū(0, t − ax) +
1
a

t+δ∫

τ1

ΔF̄1(x − (t − τ)/a, τ)dτ, x < δ/a,

Δū(x, t) = Δū(h, t − ax) − 1
a

τ2∫

t

ΔF̄1(x − (t − τ)/a, τ)dτ, x > h − δ/a,

where ΔF̄1(x, t) = (ΔF1(x, t + δ) + ΔF1(x, t))/2, upon changing the variable and switching the order
of integration in the double integrals, we arrive at

a

2

⎛
⎝

h∫

0

Δu2(x, t + δ)dx −
h∫

0

Δu2(x, t)dx

⎞
⎠ =

δ∫

0

Δu(0, t + τ)Δū(0, t − δ + τ)dτ

−
δ∫

0

Δu(h, t + τ)Δū(h, t + τ)dτ +

δ∫

0

h∫

0

Δū(x, t + τ)ΔF1(x, t + τ)dxdτ + O(δ2),

where Δu2 = (Δu)2 and Δv2 = (Δv)2. Dividing both sides by δ and passing to the limit as δ → 0, by
the well-known theorems (see [7, pp. 224–225]), we deduce that

a

2

( h∫

0

Δu2(x, t)dx

)

t

= Δu2(0, t) − Δu2(h, t) +

h∫

0

ΔuΔF1(x, t)dx (41)

for almost all t ≥ 0.
Similarly using (40), we find that

b

2

( h∫

0

Δv2(x, t)dx

)

t

= Δv2(h, t) − Δv2(0, t) +

h∫

0

ΔvΔF2(x, t)dx (42)

for almost all t ≥ 0. For c0 > 0 and U(x, t) ≥ 0, the solution to (19) satisfies

c(x, t) ≥ c0 exp(−pF 1x) ≥ c0 exp(−pF 1h) > 0.
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Using (41) and (42) with

Δu2(0, t) = Δv2(0, t), Δv2(h, t) = Δu2(h, t), f(c1(x, t)) ≥ μ > 0,

we arrive at
Zt(t) ≤ −2(1 + μ)Z(t) + 2g(t) (43)

for almost all t ≥ 0, where

Z(t) =

h∫

0

(aΔu2 + bΔv2)dx, g(t) =

h∫

0

|f(c1) − f(c2)| (a|Δu| + b|Δv|)dx.

By (26),

|Δc(x, t)| ≤ pF

x∫

0

(a|Δu(ξ, t)| + b|Δv(ξ, t)|)dξ. (44)

Consequently,

g(t) ≤ pFF 1

h∫

0

(
ψ(x, t)

x∫

0

ψ(ξ, t)dξ

)
dx =

1
2
pFF 1

( h∫

0

ψ(x, t)dx

)2

,

where ψ(x, t) = a|Δu(x, t)| + b|Δv(x, t)|. Applying the Cauchy–Bunyakovskii inequality to the last
estimate while considering that

(a|Δu| + b|Δv|)2 ≤ (a2 + ab)Δu2 + (b2 + ab)Δv2 = aΔu2 + bΔv2

for a ≥ 0, b ≥ 0, and a + b = 1, we find that 2g(t) ≤ phFF 1Z(t). By (43) and the assumption that
hpFF 1 ≤ 2, this yields Zt(t) ≤ −2μZ(t) for almost all t ≥ 0.

Verify that, for all t > 0, the absolutely continuous function Y (t) = Z(0) exp(−2μt) − Z(t) is
nonnegative. Assume to the contrary that Y (t1) < 0 at some t1 > 0. Since Y (0) = 0 and Y (t) is
continuous, there exists t0 ∈ [0, t1) such that Y (t0) = 0 and Y (t) < 0 for t ∈ (t0, t1]. However, then
Yt(t) ≥ −2μY (t) > 0 for almost all t ∈ [t0, t1], which contradicts the assumption Y (t1) < 0. Conse-
quently, Y (t) ≥ 0 and, for all t ≥ 0, we have

‖ΔU(x, t)‖2
L2(0,h) = Z(t) ≤ ‖ΔU0(x)‖2

L2(0,h) exp(−2μt). (45)

Applying to (44) for x = h successively the Cauchy–Bunyakovskii inequality, the inequality

(a|Δu| + b|Δv|)2 ≤ aΔu2 + bΔv2,

and (45), we obtain

‖Δc(x, t)‖C[0,h] ≤ pF
√

h
√

Z(t) ≤ pF
√

h‖ΔU0(x)‖L2(0,h) exp(−μt). (46)

In order to estimate ‖ΔU(x, t)‖M [0,h], consider

y(x, t) = K exp(−μt) ± Δu(x, t), z(x, t) = K exp(−μt) ± Δv(x, t),

where K = K1‖ΔU0(x)‖M [0,h] and K1 = 1 + pFF 1h. Using (39) and (40), we find for y(x, t) and z(x, t)
the equations

y(x, t) = y1(x, t) +
1
a

t∫

t1

G1[y, z](x − (t − τ)/a, τ)dτ, (47)

z(x, t) = z1(x, t) +
1
b

t∫

t2

G2[y, z](x + (t − τ)/b, τ)dτ, (48)
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where

y1(x, t) =

{
y(x − t/a, 0), t ≤ ax,

z(0, t − ax), t > ax,
z1(x, t) =

{
z(x + t/b, 0), t ≤ b(h − x),
y(h, t − b(h − x)) t > b(h − x),

G1[y, z](x, t) = q(z(x, t) − y(x, t)) − a(1 + f(c1(x, t)))y(x, t) + ag1(x, t),

G2[y, z](x, t) = q(y(x, t) − z(x, t)) − b(1 + f(c1(x, t)))z(t, x) + bg2(x, t),

gi(x, t) = (1 + f(c1) − μ)K exp(−μt) ± Δf1(x, t), i = 1, 2.

By (46),

‖Δc(x, t)‖C[0,h] ≤ pFh‖ΔU0(x)‖M [0,h] exp(−μt). (49)

Consequently,

|Δfi(x, t)| ≤ pFF 1h‖ΔU0(x)‖M [0,h] exp(−μt), gi(x, t) ≥ 0.

Since y(x, 0) ≥ 0 and z(x, 0) ≥ 0; therefore, by Corollary 1, the solutions to (47) and (48) satisfy
y(x, t) ≥ 0 and z(x, t) ≥ 0 which implies

‖ΔU(x, t)‖M [0,h] ≤ K1‖ΔU0(x)‖M [0,h] exp(−μt). (50)

By (19),

|Δc(x + δ, t) − Δc(x, t)| ≤ p

x+δ∫

x

(F 1|Δc(ξ, t)| + F (a|Δu(ξ, t)| + b|Δv(ξ, t)|))dξ.

Hence, (45), (46), (49), and (50) yield

|Δc(x + δ, t) − Δc(x, t)| ≤ K1δ
1/2‖ΔU0(x)‖L2(0,h) exp(−μt),

|Δc(x + δ, t) − Δc(x, t)| ≤ K2δ‖ΔU0(x)‖M [0,h] exp(−μt).

Together with (45), (46), (49), and (50), the last estimates imply (37) and (38) for c0 > 0.

Suppose that c0 = 0. Then c1(x, t) ≡ c2(x, t) ≡ 0 and Δc(x, t) ≡ 0. In this case, Δu(x, t) and
Δv(x, t) satisfy (39) and (40) for

ΔF1 = q(Δv − Δu) − aΔu, ΔF2 = q(Δu − Δv) − bΔv,

while, for almost all t ≥ 0, Z(t) satisfies (43) with μ = 0 and g(t) ≡ 0. Arguing as in deriving (45) and
(50), we obtain (37) and (38) with γ = 1 for U(x, t), and consequently for V (x, t). Therefore, the proof
of Theorem 4 is complete.

Corollary 2. Under the hypotheses of Theorem 4, we have:

(a) the generalized solution V (x, t) ∈ M0
1 (Π) to problem (1)–(3) with initial data U0(x) ∈ S0

is asymptotically stable in H1
0 [0, h] and H

1/2
0 (0, h) provided that the perturbed initial data

belongs to S0;

(b) as t → ∞, all solutions exponentially converge in the norms of these spaces to a unique
stationary solution.

The existence and uniqueness of a stationary solution to (1)–(3) are proved in [3, 6], and the
remaining claims of Corollary 2 follow directly from Theorems 2 and 4.
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